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Abstract - Achieving high bandwidth utilization in cloud 

computing is essential for better network performance. 

However, it is difficult to attain high bandwidth utilization in 

cloud computing due to the complex and distributed natures 

of cloud computing resources. Recently, a growing demand 

for multicast transmission is perceived in cloud computing, 

due to the explosive growth of multi-point communication 

applications, such as video conferencing, online gaming, etc. 

Nonetheless, the inherent complexity in multicast routing in 

cloud computing, existing multicast plans failed to produce 

effective and efficient protocol schemes, which limits the 

application of multicast communication on the Internet. In 

this paper, a technique is proposed in how the newly 

developed network architecture, Software Defined Network 

(SDN), can promote the design of the multicast protocol and 

improve the performance of the multicast transmission in the 

cloud computing. The approach is to use the SDN-cloud 

Computing-enabled multicast communication scheme with 

ultra-high bandwidth utilization. The bandwidth utilization is 

enhanced by measuring various routing trees for each 

multicast transmission session and distributing the traffic load 

over all available routes in the cloud computing resources. 

The SDN is utilized to tackle with various design hurdles in 

the cloud computing, including both the current ones with the 

conventional multicast pattern and the newly emerged ones 

with multi-tree multicast. The prototype implementation and 

experiments demonstrate the performance enhancement of the 

proposed approach in the cloud computing in compared to 

conventional single-tree multicast designs. 

 

Keywords -  Cloud Systems, High Bandwidth Utilization, 

cloud Computing, Software Defined Network (SDN), Multi-

tree multicast. 

I. INTRODUCTION 

With the advent of cloud computing, the efficiency to 

process the data at the cloud of the network system has 

increased as more data is generated at the cloud of the 

network. Since the birth of the Internet, unicast 

communication has governed the Internet. However, lately, 

there has been an intensifying desire for multicast 

transmission due to the evolution of applications with multi-

point communication specifications, such as video 

conferencing, parallel computing, online gaming, etc. These 

multi-point communications also impact the cloud computing 

in terms of bandwidth availability of the network systems. 

However, due to the intrinsic complexity of multicast routing 

and transportation, few of the existing multicast schemes 

remain in practice in the current cloud computing. This 

ineffectiveness and inefficiency of existing multicast designs 

in cloud computing exceedingly limit the application of 

multicast transportation in the current cloud computing 

architecture. There are many factors contributing to the 

ineffectiveness and the low performance of traditional 

multicast schemes. For instance, the distributed nature of the 

cloud computing architecture restricts the scope of each entity 

in the cloud computing in making routing/forwarding 

decisions. Each router in the cloud computing results routing 

algorithms based on information transferred from nearby 

routers in cloud computing, doing it inefficient in dealing 

with network dynamics. Similarly, with only the local view 

of the cloud computing, each switch is not able to make 

global optimal forwarding choices regarding the network 

circumstances. While the inefficiency brought about by the 

limited view is still tolerable in unicast communication, it is 

definitely non-negligible in multicast due to the added 

dimension in the problem. 

Another notable concern is the scalability. 
 

Multicast is disreputable for its poor scalability brought 

by the necessity in performing dynamic group management. 

In most existing multicast schemes for cloud computing, the 

group management functionality is performed by the routing 

or forwarding elements in the cloud network. The 

routers/switches monitor and process the cloud network for 

group joining and leaving messages, calculate the optimal 

routes/forwarding decisions, and perform the 

routing/forwarding functionality based on the cloud network 
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view of their local scopes. This causes a prominent burden to 

the routing/forwarding components in the cloud network. 

Other contributors to multicast’s low performance are: the 

natural complexity in computing multicast routes, the lack of 

efficient reliable protocol [1], [2], the hardness in satisfying 

multiple QoS constraints [3], etc. While these problems are 

hard to solve, in this paper the previous two practical 

problems of multicast communication in cloud computing are 

focused. In this paper, a multi-tree multicast communication 

scheme is proposed with high bandwidth utilization. The 

proposed technique aims to utilize the path diversity in 

modern network topologies for cloud computing. For each 

multicast session, multiple multicast trees are calculated, each 

with a specific bandwidth share on the tree. The sender 

distributes the total traffic over all the multicast trees that it can 

utilize, thus achieving much higher bandwidth utilization than 

the conventional single-tree schemes. 

 

There are several challenges in designing a multi- tree 

multicast scheme in cloud computing. First, assigning 

multiple trees to a single multicast session can further 

deteriorate the scalability of multicast in cloud network. 

While previously each switch/router need only to store 

information about the single-tree route, now multiple routes 

need to be stored, and also more switches may be involved in 

the transmission of one multicast session. Second, computing 

multiple multicast trees requires more computation resources 

and wider view of the cloud network. While computing a 

single routing tree can be performed in a distributed manner, 

it is hard for the switch/router to calculate many trees at the 

same time with its limited computation resource and scope of 

view. 

 

Theoretically, computing multiple cloud-disjoint Steiner 

Trees is algorithmically harder than computing a single 

multicast tree [4]. Third, distributing the traffic load over 

multiple trees in cloud networks needs knowledge about the 

properties of the trees on the sender side, such as bandwidth, 

delay etc. While in single-tree, routing information gathering 

is relatively trivial as there are many works have been done 

[5], [6] and [7]. It is unknown whether gathering information 

of multiple trees is practical when the gathering is done in a 

distributed manner. Unevenly, distributing the traffic may 

lead to hot-spots in the network, degrading the benefit of 

multi-tree multicast. Fourth, multi-tree multicast may cause 

the problem of packet out-of-order delivery at the receiver 

side. This is due to the fact that in single-tree schemes the 

transmission of packets are in a sequential manner, while in 

multi- tree multicast the transmission of multiple packets 

occurs in a parallel manner. This phenomenon is further 

exacerbated when the multiple trees have various latency 

properties. This may cause great problems in some real-time 

applications in cloud network such as video conferencing etc. 
 

To tackle these challenges, Software Defined 

Networking (SDN) [8], a newly emerged network control 

plane architecture, is exploited in the proposed system design 

in cloud computing. SDN has the natural advantage in dealing 

with challenges above for cloud network. With the flexible 

control offered by SDN, the proposed architecture can 

offload most of the computation and management tasks to the 

controller, leaving only the forwarding functionality in 

network intermediate nodes, thus solving both the scalability 

problem and the computational limitations. For the fourth 

challenge, a well-designed transportation the protocol can 

solve the problem of reliability, which is not within the scope 

of this paper. In general, with the help of SDN, it is applicable 

to design a much more effective and efficient multicast 

scheme compared to the traditional schemes for cloud 

networks. 

 

The paper is organized as follows. Section II gives an 

overview of the proposed design for cloud network. Section 

III demonstrates our method in designing the proposed 

scheme. Section IV presents our implementation of a 

prototype of the proposed scheme. In Section V we conclude 

our proposed scheme and present our future direction along 

this line. 

II. OVERVIEW 

In this section, an overview towards a Software Defined 

Networking-enabled multicast scheme is proposed which can 

achieve high bandwidth utilization in cloud computing 

networks. The goal is to thoroughly employ the route diversity 

in various network topologies, to achieve ultra-high 

bandwidth utilization thus improving the performance of 

multicast communication in cloud networks. The proposed 

approach has several crucial design decisions that lead to the 

desired property of the scheme. 

Fig. 1 Software Defined Networking-Enabled Multicast Scheme for 

cloud Computing 
 

Figure 1 gives an overview of the Software Defined 

Networking-enabled multicast scheme framework in cloud 

networks revealing the various elements, the interactions 

between the components and the interactive connections 

between the controller components and the cloud networks 

components. In this figure, some of the primary components 

of Software Defined Networking-enabled multicast scheme 

in cloud network are shown. Various other functionalities can 

be connected by loading different modules into the controller 
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of SDN, such as traffic control, network status monitoring 

etc. 

The SDN controller needs only reveal an interface to the 

network. The SDN controller is placed close to the cloud 

network so that it can control different components of the 

cloud network. The interface represents the relationship 

between the network elements (end-points and intermediate 

nodes) of the cloud networks and the corresponding 

controller component (network control and end-point 

interaction). Reasonably, both the end-points and the 

intermediate nodes of the cloud networks can trigger network 

modifications, which raises various events in the controller. 

The interaction component utilizes different events, invoking 

the corresponding processing logic inside the controller for 

further processing, and then replies the processing results if 

needed. Upon getting network events from various 

components of the cloud network, the controller requires to 

carry out different jobs. For instance, when a receiver requests 

to join or leave a group, the group management component 

needs to validate the request with existing group information, 

perform the membership operation, and reply the 

corresponding information; or when a link malfunction is 

identified, the topology management needs to adjust the 

topology information, and also, recalculate all existing routes 

for accurate transmission in cloud networks. 

 

A key component is the routing component. It carries out 

the task of calculating the routes near the cloud networks 

regarding a request for transmission. In the proposed scheme, 

each transmission session is not associated with a particular 

tree, but various different multicast trees each with varying 

capacity shares. There are various algorithms to calculate 

multiple Steiner trees given the topology. It is important to 

choose the algorithm regarding many constraints for cloud 

computing, such as computation complexity, resource 

consumption, etc. 

 

There are diverse benefits in using the SDN control plane 

model in cloud computing, i.e., using a logically centralized 

controller of SDN as the control plane near the cloud of the 

network. The SDN control model is a short-cut in solving 

many of the intrinsic limitations of multicast communication. 

Improved scalability for cloud networks. SDN can 

considerably increase the scalability of multicast for cloud 

networks, due to the excessive amount of resource the 

controller can utilize as a server application. In traditional 

cloud computing, either the switches or the routers have 

adequate computing and storage resources for multicast route 

computing and group management [9]. 

 

The controller placed near the cloud of the network has 

much more resources for management and computation 

compared to traditional cloud networks. A typical PC with 

4GB memory space can support thousands to tens of 

thousands of multicast groups. A further improvement may 

come from implementing a “logically centralized” controller 

architecture, where there are multiple identical physical 

controllers balancing the control load network-wide. 

A. Overhead offloading 
SDN offloads most of the computation and storage 

overhead to the controller, which releases the resources on 

the forwarding elements. While traditional switches or routers 

placed near the cloud of networks need to perform various 

tasks such as routing, group management, and information 

propagation. Whereas, SDN placed near the cloud of the 

networks have all their power can be used for forwarding, 

leading to improvements in the speed of forwarding in cloud 

computing. 

B. Optimality of Control 

SDN placed near the cloud of the network facilitates the 

control plane to perform globally optimal control decisions 

by implementing a global network view near the cloud of the 

network rather than a limited local view of cloud networks. In 

traditional cloud networks, the forwarding elements form their 

own decisions based on the local view (or more precisely, a 

delayed view) of the network, which is aggregated from only 

their neighbours in the clouds. The limited scope of view 

limits the quality of decision made by switches or routers, 

which further degrades the network performance of traditional 

cloud networks. On the contrary, the global view of the 

controller in SDN placed near the cloud of the networks 

provides the opportunity to achieve global optimality when 

making local decisions, i.e., optimizing some network 

objectives globally in routing and forwarding. 

 

Besides the above benefits of SDN in cloud computing 

that directly improves the performance of multicast 

communication, SDN can also provide better flexibility in 

control and programmability for cheaper network 

management. All these benefits lead us to choose SDN as the 

control plane solution of our proposed multicast scheme. 

III. OVERALL DESIGN 

The proposed idea of Software Defined Networking-

Enabled multicast scheme for cloud computing is to construct 

multiple multicast trees for every multicast session and 

distribute traffic load on each tree in cloud networks. 

Following the methodology of MPTCP [10], each multicast 

tree is signified as a sub-flow in the multicast session. Each 

sub-flow manages its private transmission state, reliability 

mechanism, and congestion control. Each sub-flow is 

unaware of the presence of other sub-flows that belong to the 

same multicast session, thus maintaining the simplicity of 

flow management. To accomplish this simplicity while 

achieving low overhead in transmission and on intermediate 

nodes, the SDN is introduced at the cloud of the network to 

carry out heavy-load jobs in the transmission process. Each 

multicast session is consisting of four components: the 

sender, the forwarding elements, the receivers and the SDN 

controller. Each multicast session has exactly one sender, 
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usually more than one receivers and is managed by exactly 

one SDN controller. The data center present in the cloud 

computing is also managed by the SDN controller which 

increase the efficiency to process data at the cloud of the 

network. In the following subsections, the operations on each 

component are illustrated respectively. 
 

A. Sender Operations 

The sender present in the cloud of the network has 

several responsibilities in the multicast session. First, the 

sender needs to initiate the transmission of a data block. The 

initiation process is composed of several procedures. In the 

first place, the sender needs to communicate with the 

multicast controller present in the cloud computing. The 

sender will first send the information about the transmission 

to the controller by sending out a designated packet towards a 

specific IP address, namely, the management address. The 

information includes the multicast group this sender is sending 

to, the length of the data block, etc. This management address 

is either pre-configured or not matching in any switch flow 

table, both will lead to the packet being sent to the controller. 

Upon retrieval of this initiation packet, the controller will 

carry out calculations associated with this multicast session, 

and reply the information necessary for the sender to correctly 

initiate all the multicast sub-flows and start the transmission. 

When the sender receives this initiation reply, it will initiate 

all the sub-flows and begin transmission. In the process of 

transmitting, the sender must still listen to any traffic coming 

from the controller, in case that the status changes at the 

cloud of the network. When the sender receives packet about 

network dynamics, it will then change the behaviour of 

transmitting according to the control packet. After the 

transmission of a traffic block, the sender will send another 

packet towards the management address, indicating the end 

of the transmission. No controller reply is needed for the 

ending packet, in order to save the sender for other tasks. 
 

B. Intermediate Node Operations 

The intermediate nodes of the cloud computing are only 

responsible for packet forwarding based on their flow tables. 

They will basically match on the address field (the session 

identifier) and the sub-flow identifier field. Since both the 

group management and the decision making is pre-done by 

the controller, no computational resource is wasted on these 

nodes. Thus, the intermediate nodes are expected to achieve 

their best performance in packet forwarding. 

 

C. Receiver Operations 

First, a receiver joins a multicast group by sending 

“Group Join” message to the corresponding management 

address. Upon retrieval of the join message, the controller 

updates the management database and replies with the 

necessary information about the multicast group. After 

joining the group, the receivers in a multicast session basically 

plays the role of traffic aggregator and network state monitor. 

First, the receivers need to aggregate traffic from all multicast 

sub-flows of the corresponding multicast session into the 

sequential flow of data, which can be directly consumed by 

the upper layer. The aggregation process basically follows the 

MPTCP method, thus will not be discussed in this paper. 

The receivers also perform reliability functionalities. 

There have been many existing reliability mechanisms for 

multicast transportation [1], [2], [11]. The proposed scheme is 

free to perform any of the existing reliability protocols, only 

that all mechanisms are performed in the sub-flow level. 

Besides, the receivers can also reply receiving statistics to the 

controller through the management address. This can provide 

some sort of feedback for the in-time update of the network 

status. A receiver leaves a group by sending “Group Leave” 

message to the corresponding management address. 

 

D. Controller Operations 

The controller present near the cloud of the network 

takes most of the jobs in maintaining a multicast session. 

Below are some of the responsibilities of the controller. 

 

a) Group management 
The controller manages the information of all multicast 

groups and sessions in the cloud network. It processes joining 

and leaving of group members, as well as periodically 

checking the status of each member. By offloading the task of 

group management to the controller, the intermediate nodes 

in the cloud network can then devote all their efforts to packet 

forwarding, greatly improving the performance and the 

scalability of the multicast scheme for cloud computing. 

 

b) Topology service and routing 
The controller of the cloud computing keeps track of the 

global view of the whole cloud network, and thus is optimal 

in providing network view and calculating best routes for 

nearby components present in the cloud. Upon the retrieval of 

the transmission initiation message from each sender near the 

cloud, the controller computes the optimal routes regarding of 

the session and replies the information towards the sender, thus 

initiating the transmission. If there is not enough capacity in 

the cloud network, or some receivers are temporarily 

unreachable, the controller will either pause or drop the 

initiation message. 

 

c) Flow table updating 

Prior to initiating each session of transmission, the 

controller will first configure each intermediate nodes of the 
cloud network in the routes of the session, updating their flow 

tables in order to provide the correct routing functionality. 
Also, when the network is undergoing dynamics, the 

controller need to recompute all the routes and update the 

corresponding switch tables. 

 

Besides these basic functionalities, the controller can 

apply various policies, such as middlebox enforcement etc. In 

this paper, the primary functionalities required by a multicast 

scheme are examined. 
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E. Management Communication 

It is notable to mention how the end-hosts at the cloud of 

the network communicate with the SDN controller. Basically, 

the communication between end- hosts and the controller has 

three types: receiver- initiated, sender-initiated and controller-

initiated. The corresponding message formats are defined in 

the management protocol. 

 

Receiver-initiated communication basically includes two 

kinds of messages: request for group join, and notification of 

group leave. When the receiver wishes to join a group, it 

sends the group join message to the controller, and wait for 

the reply from the controller about joining status; when it 

wishes to leave a group, it sends the group leave message and 

quit without reply. Similarly, sender-initiated communication 

basically involves session initialization and session end, the 

former with a reply and the latter without. The controller-

initiated messages mostly involve network or group status 

updates. 

 

There are two choices for the communication between 

end hosts and the controller: connectional and connectionless. 

In this proposed scheme, the connectionless communication 

for information exchange between end-hosts and the 

controller is considered. This is due to three reasons: 

 

 Connectional communication will incur extra 

communication overhead, which will influence the 

response time off from the controller; 

 Direct connectional communication between end hosts 

and the controller may raise security issues; 

 The communication is applied in a simple request-

reply manner, in which case the requester can keep the 

full responsibility of retransmitting the request or 

verifying the transmitted reply, thus the benefits of 

connectional communication is minor in this case. 

 

The communication takes place in the following 

process. For end-host-initiated communication, the 

requester manipulates the request message based on the 

protocol sends the message towards a specific virtual 

management address and listens to the send port for the 

reply. The controller receives all packets sent to this 

management address parses the requests according to the 

protocol, verifies and processes the requests, manipulates 

the reply message, and sends to the source addresses and 

ports based on request packets. For controller-initiated 

communication, the controller simply manipulates the 

update messages and sends to corresponding end-hosts 

based on its group and session data stored. 

 

A crucial design in this process is the virtual 

management address. This address is actually not bound to 

an agent in the network, reserved for the use of 

management only. Specifically, this address is defined in 

the management protocol, which is known to both the 

controller and the end-hosts. In establishing the network, the 

controller will set up a flow entry in each switch, matching 

all packets towards this address with the action of 

“forwarding to the controller”, prior to any communication 

behaviour in the network. In using this virtual address 

rather than the physical address of the controller, it can 

keep its identity and location private to only the network 

administrator, thus securing the controller from anonymous 

connections. 

 

F. Routing 

The proposed scheme achieves high bandwidth 

utilization through transmission over multiple trees for each 

session. It is important to understand how the cloud 

network routes the packets belonging to one session but 

multiple trees. In transmission, the sender needs to split the 

data packets overall the trees it can utilize, and the 

intermediate nodes need to distinguish data packets on 

different routes belonging in one session and perform 

different forwarding decisions. This is done by encoding 

the route identifier of each route into the packet header. 

 

When initializing the transmission session, the sender 

and the controller will exchange information regarding the 

set-up of the session, which includes the number of trees in 

this session, as well as the route identifier of each tree. On 

the sender side, this route identifier is thus encoded into the 

packet header of each data packet, based on the load 

splitting policy installed. On the controller side, when 

configuring the network for this session, it needs to set up 

flow entries for each tree on corresponding switches, 

matching the field where the route identifier is encoded, 

and performing the corresponding forwarding behaviour. 

This encoding should be pre-defined in the proposed 

scheme, which is known to both the sender and the 

controller. Applicable fields include VLAN ID or MPLS 

tag. 

IV. CASE STUDY 

Our performance evaluation is conducted on GENI test-
bed [12], a well-known network emulator with special 

supports for OpenFlow simulation which uses POX as a 
controller. In our simulation, we first build a designated 

GENI test-bed topology for testing. After that, we run our 

controller, receiver and sender program on corresponding 
virtual nodes in the topology. We count the data amount 

received at each receiver program as our main metrics of 

performance evaluation. Our GENI topology is shown in 
Figure 2. We have one sender s, and three receivers r1; r2; 

r3. 
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Fig. 2 GENI Topology for cloud Computing 

 

To validate our multitree scheme, we set cloud links near 

the cloud of the network to have a capacity of 

$100Mbps$, while core links have a capacity of 

$5Mbps$. This is a common scenario, as for example in data 

center networks, the core links are usually the bottleneck of 

the whole of the cloud computing. The traffic is generated 

on the sender, where fixed-length meaningless bytes are 

filled in the sender buffer and sent on the different routes. 

 

The proposed scheme is compared to a singletree 

multicast scheme in some experiments. Without loss of 

generality, we implement the single-tree routing algorithm 

using BFS as well. This is because, in this paper, we don’t 

take into consideration QoS metrics other than bandwidth 

such as latency or packet loss. Therefore, in a homogeneous 

network topology such as the one we used, the bandwidth 

property of any single-tree routing scheme should be the 

same. 

 

Figure 3 shows the application-level goodput from the 

view of the three receivers, using both a single tree scheme 

and the proposed scheme. It is clear that the goodput 

received through the proposed scheme is much higher than 

that through a simple single-tree multicast scheme. Also, the 

average goodput of scheme is nearly 3 times of the goodput 

of single-tree multicast. 

Fig. 3 Application-level Goodput of Receiver 

 

This is because in our test topology shown in Figure 2, 

there are three cloud-disjoint trees from s to r1; r2; r3, each 

goes through sw11; sw12; sw13 respectively. By fully 

utilizing the path diversity between sw11; sw12; sw13 and 

sw21; sw22; sw23, the proposed scheme can achieve three 

times the bandwidth utilization of a traditional single-tree 

scheme. 

 

One possible concern about Figure 3 may be the saw-

toothlike vibration of the traffic. This is actually because we 

implemented our transmission upon the UDP protocol, who 

lacks the basic congestion control mechanisms as TCP has. 

Specifically, this sawtooth vibration is the consequence of 

intermediate nodes unfairly drops the incoming packets in a 

simple drop- tail manner. Therefore, either a well-designed 

congestion control mechanism or adding fair-queuing 

functionality onto intermediate nodes shall alleviate the 

problem. 
 

Similar to Figure 3, Figure 4 shows the time for 

transmission versus the number of data bytes transmitted. 

The data is collected by explicitly specifying in the controller 

up to how many trees one transmission session can use, thus 

the results for a number of trees equal to 1; 2; 3 respectively. 

The results confirm our demonstration in Figure 3. With an 

increased number of trees being used for transmission, the 

transmission time of the same amount of data can be greatly 

reduced. Note that in the topology, all the three trees are 

cloud-disjoint, in which case, multi-tree multicast can obtain 

the best gain. 
 

When multiple trees are sharing a bottleneck link, there 

may be degradation in performance. But it is clear that even 

in the worst-case scenario, where all multiple trees share a 

single link, the performance of proposed scheme will be at 

least as good as any single- tree multicast scheme, given the 

same algorithm in finding the multicast tree. 

 

 

 

 

 

 

 

 

 

 

Fig. 4 Transmission Time vs. Bytes Received 

 

 While Figure 3 and Figure 4 give a general view of 

the performance of proposed scheme, in Figure 5, we show 

how the load is balanced among the trees. We take the 

application-level goodput of receiver r1 and plot the 
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goodput bandwidth received on each of the three multicast 

trees. 

 

Fig. 5 Application-level Goodput of Trees on Receiver r1 

 

From Figure 5, although there seems some difference in 

the throughput among the three trees, in most cases they 

show the same traffic pattern. As above, the vibration is due 

to the drop-tail the behaviour of the switches. From this 

figure, we can further figure out that the vibration is mainly 

caused by the drop-tail the behavior of the output queues at 

switch sw0. 

 

The idea here is that 1) switch sw0 is the first and 

possibly the only bottleneck that every sub-flow encounters 

in the network, and 2) traffic vibration on different trees 

follows a very similar pattern. It is not likely that every sub-

flow follows the same traffic pattern when the bottleneck is 

not shared among all sub-flows. 

 

The above simulation results show that our proposed 

scheme can achieve ultra-high bandwidth utilization 

compared to traditional single-tree multicast schemes. Also, 

by using designated load balancing and traffic engineering 

mechanisms, we can achieve balanced load among all trees. 

V. CONCLUSION 

In this paper, we studied the existing limitations and 

challenges of various conventional multicast communication 

schemes in cloud computing, as well as how SDN can solve 

the problems and enable an effective and efficient multicast 

scheme design for cloud computing. The proposed scheme, 

an SDN- enabled multicast scheme for cloud computing that, 

not only solves the existing challenges and limitations by 

introducing the flexible and powerful control plane of SDN, 

but also achieves ultra-high bandwidth utilization through 

fully utilizing the path diversity in the given cloud network 

topology. 

The proposed scheme for cloud computing is both 

effective, i.e., it achieves the basic requirements of a 

multicast communication scheme, and efficient, i.e., it shows 

significant performance improvement compared to existing 

solutions. Besides that, the proposed scheme is also flexible 

and extensible. With the help of SDN, one can easily load 

different policies and algorithms into the existing framework, 

such as different multi-tree routing algorithms, more 

complicated traffic control mechanisms, etc. The proposed 

scheme is validated by actually implementing a prototype of 

cloud computing, and evaluating the scheme using different 

metrics. Experiment results confirm the proposed argument is 

both effective and efficient. While there are still a lot of 

future directions along this line, the proposed scheme shows 

promising properties in improving network performance even 

with its primary architecture for cloud computing. 
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