
International Journal of Computer Trends and Technology Volume 68 Issue 3, 92-98, March 2020

ISSN: 2231-2803 / https://doi.org/10.14445/22312803/IJCTT-V68I3P119 © 2020 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Attaining High Bandwidth in Cloud Computing

through SDN-Enabled Multi-Tree Multicast
Sayantan Guha1, and Adel Alshamrani2

1
CIDSE, Arizona State University, Tempe, USA

2
CCSE, University of Jeddah, Jeddah, Saudi Arabia

Received Date: 21 February 2020

Revised Date: 04 April 2020

Accepted Date: 07 April 2020

Abstract - Achieving high bandwidth utilization in cloud

computing is essential for better network performance.

However, it is difficult to attain high bandwidth utilization in

cloud computing due to the complex and distributed natures

of cloud computing resources. Recently, a growing demand

for multicast transmission is perceived in cloud computing,

due to the explosive growth of multi-point communication

applications, such as video conferencing, online gaming, etc.

Nonetheless, the inherent complexity in multicast routing in

cloud computing, existing multicast plans failed to produce

effective and efficient protocol schemes, which limits the

application of multicast communication on the Internet. In

this paper, a technique is proposed in how the newly

developed network architecture, Software Defined Network

(SDN), can promote the design of the multicast protocol and

improve the performance of the multicast transmission in the

cloud computing. The approach is to use the SDN-cloud

Computing-enabled multicast communication scheme with

ultra-high bandwidth utilization. The bandwidth utilization is

enhanced by measuring various routing trees for each

multicast transmission session and distributing the traffic load

over all available routes in the cloud computing resources.

The SDN is utilized to tackle with various design hurdles in

the cloud computing, including both the current ones with the

conventional multicast pattern and the newly emerged ones

with multi-tree multicast. The prototype implementation and

experiments demonstrate the performance enhancement of the

proposed approach in the cloud computing in compared to

conventional single-tree multicast designs.

Keywords - Cloud Systems, High Bandwidth Utilization,

cloud Computing, Software Defined Network (SDN), Multi-

tree multicast.

I. INTRODUCTION

With the advent of cloud computing, the efficiency to

process the data at the cloud of the network system has

increased as more data is generated at the cloud of the

network. Since the birth of the Internet, unicast

communication has governed the Internet. However, lately,

there has been an intensifying desire for multicast

transmission due to the evolution of applications with multi-

point communication specifications, such as video

conferencing, parallel computing, online gaming, etc. These

multi-point communications also impact the cloud computing

in terms of bandwidth availability of the network systems.

However, due to the intrinsic complexity of multicast routing

and transportation, few of the existing multicast schemes

remain in practice in the current cloud computing. This

ineffectiveness and inefficiency of existing multicast designs

in cloud computing exceedingly limit the application of

multicast transportation in the current cloud computing

architecture. There are many factors contributing to the

ineffectiveness and the low performance of traditional

multicast schemes. For instance, the distributed nature of the

cloud computing architecture restricts the scope of each entity

in the cloud computing in making routing/forwarding

decisions. Each router in the cloud computing results routing

algorithms based on information transferred from nearby

routers in cloud computing, doing it inefficient in dealing

with network dynamics. Similarly, with only the local view

of the cloud computing, each switch is not able to make

global optimal forwarding choices regarding the network

circumstances. While the inefficiency brought about by the

limited view is still tolerable in unicast communication, it is

definitely non-negligible in multicast due to the added

dimension in the problem.

Another notable concern is the scalability.

Multicast is disreputable for its poor scalability brought

by the necessity in performing dynamic group management.

In most existing multicast schemes for cloud computing, the

group management functionality is performed by the routing

or forwarding elements in the cloud network. The

routers/switches monitor and process the cloud network for

group joining and leaving messages, calculate the optimal

routes/forwarding decisions, and perform the

routing/forwarding functionality based on the cloud network

Sayantan Guha & Adel Alshamrani / IJCTT, 68(3), 92-98, 2020

93

view of their local scopes. This causes a prominent burden to

the routing/forwarding components in the cloud network.

Other contributors to multicast’s low performance are: the

natural complexity in computing multicast routes, the lack of

efficient reliable protocol [1], [2], the hardness in satisfying

multiple QoS constraints [3], etc. While these problems are

hard to solve, in this paper the previous two practical

problems of multicast communication in cloud computing are

focused. In this paper, a multi-tree multicast communication

scheme is proposed with high bandwidth utilization. The

proposed technique aims to utilize the path diversity in

modern network topologies for cloud computing. For each

multicast session, multiple multicast trees are calculated, each

with a specific bandwidth share on the tree. The sender

distributes the total traffic over all the multicast trees that it can

utilize, thus achieving much higher bandwidth utilization than

the conventional single-tree schemes.

There are several challenges in designing a multi- tree

multicast scheme in cloud computing. First, assigning

multiple trees to a single multicast session can further

deteriorate the scalability of multicast in cloud network.

While previously each switch/router need only to store

information about the single-tree route, now multiple routes

need to be stored, and also more switches may be involved in

the transmission of one multicast session. Second, computing

multiple multicast trees requires more computation resources

and wider view of the cloud network. While computing a

single routing tree can be performed in a distributed manner,

it is hard for the switch/router to calculate many trees at the

same time with its limited computation resource and scope of

view.

Theoretically, computing multiple cloud-disjoint Steiner

Trees is algorithmically harder than computing a single

multicast tree [4]. Third, distributing the traffic load over

multiple trees in cloud networks needs knowledge about the

properties of the trees on the sender side, such as bandwidth,

delay etc. While in single-tree, routing information gathering

is relatively trivial as there are many works have been done

[5], [6] and [7]. It is unknown whether gathering information

of multiple trees is practical when the gathering is done in a

distributed manner. Unevenly, distributing the traffic may

lead to hot-spots in the network, degrading the benefit of

multi-tree multicast. Fourth, multi-tree multicast may cause

the problem of packet out-of-order delivery at the receiver

side. This is due to the fact that in single-tree schemes the

transmission of packets are in a sequential manner, while in

multi- tree multicast the transmission of multiple packets

occurs in a parallel manner. This phenomenon is further

exacerbated when the multiple trees have various latency

properties. This may cause great problems in some real-time

applications in cloud network such as video conferencing etc.

To tackle these challenges, Software Defined

Networking (SDN) [8], a newly emerged network control

plane architecture, is exploited in the proposed system design

in cloud computing. SDN has the natural advantage in dealing

with challenges above for cloud network. With the flexible

control offered by SDN, the proposed architecture can

offload most of the computation and management tasks to the

controller, leaving only the forwarding functionality in

network intermediate nodes, thus solving both the scalability

problem and the computational limitations. For the fourth

challenge, a well-designed transportation the protocol can

solve the problem of reliability, which is not within the scope

of this paper. In general, with the help of SDN, it is applicable

to design a much more effective and efficient multicast

scheme compared to the traditional schemes for cloud

networks.

The paper is organized as follows. Section II gives an

overview of the proposed design for cloud network. Section

III demonstrates our method in designing the proposed

scheme. Section IV presents our implementation of a

prototype of the proposed scheme. In Section V we conclude

our proposed scheme and present our future direction along

this line.

II. OVERVIEW

In this section, an overview towards a Software Defined

Networking-enabled multicast scheme is proposed which can

achieve high bandwidth utilization in cloud computing

networks. The goal is to thoroughly employ the route diversity

in various network topologies, to achieve ultra-high

bandwidth utilization thus improving the performance of

multicast communication in cloud networks. The proposed

approach has several crucial design decisions that lead to the

desired property of the scheme.

Fig. 1 Software Defined Networking-Enabled Multicast Scheme for

cloud Computing

Figure 1 gives an overview of the Software Defined

Networking-enabled multicast scheme framework in cloud

networks revealing the various elements, the interactions

between the components and the interactive connections

between the controller components and the cloud networks

components. In this figure, some of the primary components

of Software Defined Networking-enabled multicast scheme

in cloud network are shown. Various other functionalities can

be connected by loading different modules into the controller

Sayantan Guha & Adel Alshamrani / IJCTT, 68(3), 92-98, 2020

94

of SDN, such as traffic control, network status monitoring

etc.

The SDN controller needs only reveal an interface to the

network. The SDN controller is placed close to the cloud

network so that it can control different components of the

cloud network. The interface represents the relationship

between the network elements (end-points and intermediate

nodes) of the cloud networks and the corresponding

controller component (network control and end-point

interaction). Reasonably, both the end-points and the

intermediate nodes of the cloud networks can trigger network

modifications, which raises various events in the controller.

The interaction component utilizes different events, invoking

the corresponding processing logic inside the controller for

further processing, and then replies the processing results if

needed. Upon getting network events from various

components of the cloud network, the controller requires to

carry out different jobs. For instance, when a receiver requests

to join or leave a group, the group management component

needs to validate the request with existing group information,

perform the membership operation, and reply the

corresponding information; or when a link malfunction is

identified, the topology management needs to adjust the

topology information, and also, recalculate all existing routes

for accurate transmission in cloud networks.

A key component is the routing component. It carries out

the task of calculating the routes near the cloud networks

regarding a request for transmission. In the proposed scheme,

each transmission session is not associated with a particular

tree, but various different multicast trees each with varying

capacity shares. There are various algorithms to calculate

multiple Steiner trees given the topology. It is important to

choose the algorithm regarding many constraints for cloud

computing, such as computation complexity, resource

consumption, etc.

There are diverse benefits in using the SDN control plane

model in cloud computing, i.e., using a logically centralized

controller of SDN as the control plane near the cloud of the

network. The SDN control model is a short-cut in solving

many of the intrinsic limitations of multicast communication.

Improved scalability for cloud networks. SDN can

considerably increase the scalability of multicast for cloud

networks, due to the excessive amount of resource the

controller can utilize as a server application. In traditional

cloud computing, either the switches or the routers have

adequate computing and storage resources for multicast route

computing and group management [9].

The controller placed near the cloud of the network has

much more resources for management and computation

compared to traditional cloud networks. A typical PC with

4GB memory space can support thousands to tens of

thousands of multicast groups. A further improvement may

come from implementing a “logically centralized” controller

architecture, where there are multiple identical physical

controllers balancing the control load network-wide.

A. Overhead offloading
SDN offloads most of the computation and storage

overhead to the controller, which releases the resources on

the forwarding elements. While traditional switches or routers

placed near the cloud of networks need to perform various

tasks such as routing, group management, and information

propagation. Whereas, SDN placed near the cloud of the

networks have all their power can be used for forwarding,

leading to improvements in the speed of forwarding in cloud

computing.

B. Optimality of Control

SDN placed near the cloud of the network facilitates the

control plane to perform globally optimal control decisions

by implementing a global network view near the cloud of the

network rather than a limited local view of cloud networks. In

traditional cloud networks, the forwarding elements form their

own decisions based on the local view (or more precisely, a

delayed view) of the network, which is aggregated from only

their neighbours in the clouds. The limited scope of view

limits the quality of decision made by switches or routers,

which further degrades the network performance of traditional

cloud networks. On the contrary, the global view of the

controller in SDN placed near the cloud of the networks

provides the opportunity to achieve global optimality when

making local decisions, i.e., optimizing some network

objectives globally in routing and forwarding.

Besides the above benefits of SDN in cloud computing

that directly improves the performance of multicast

communication, SDN can also provide better flexibility in

control and programmability for cheaper network

management. All these benefits lead us to choose SDN as the

control plane solution of our proposed multicast scheme.

III. OVERALL DESIGN

The proposed idea of Software Defined Networking-

Enabled multicast scheme for cloud computing is to construct

multiple multicast trees for every multicast session and

distribute traffic load on each tree in cloud networks.

Following the methodology of MPTCP [10], each multicast

tree is signified as a sub-flow in the multicast session. Each

sub-flow manages its private transmission state, reliability

mechanism, and congestion control. Each sub-flow is

unaware of the presence of other sub-flows that belong to the

same multicast session, thus maintaining the simplicity of

flow management. To accomplish this simplicity while

achieving low overhead in transmission and on intermediate

nodes, the SDN is introduced at the cloud of the network to

carry out heavy-load jobs in the transmission process. Each

multicast session is consisting of four components: the

sender, the forwarding elements, the receivers and the SDN

controller. Each multicast session has exactly one sender,

Sayantan Guha & Adel Alshamrani / IJCTT, 68(3), 92-98, 2020

95

usually more than one receivers and is managed by exactly

one SDN controller. The data center present in the cloud

computing is also managed by the SDN controller which

increase the efficiency to process data at the cloud of the

network. In the following subsections, the operations on each

component are illustrated respectively.

A. Sender Operations

The sender present in the cloud of the network has

several responsibilities in the multicast session. First, the

sender needs to initiate the transmission of a data block. The

initiation process is composed of several procedures. In the

first place, the sender needs to communicate with the

multicast controller present in the cloud computing. The

sender will first send the information about the transmission

to the controller by sending out a designated packet towards a

specific IP address, namely, the management address. The

information includes the multicast group this sender is sending

to, the length of the data block, etc. This management address

is either pre-configured or not matching in any switch flow

table, both will lead to the packet being sent to the controller.

Upon retrieval of this initiation packet, the controller will

carry out calculations associated with this multicast session,

and reply the information necessary for the sender to correctly

initiate all the multicast sub-flows and start the transmission.

When the sender receives this initiation reply, it will initiate

all the sub-flows and begin transmission. In the process of

transmitting, the sender must still listen to any traffic coming

from the controller, in case that the status changes at the

cloud of the network. When the sender receives packet about

network dynamics, it will then change the behaviour of

transmitting according to the control packet. After the

transmission of a traffic block, the sender will send another

packet towards the management address, indicating the end

of the transmission. No controller reply is needed for the

ending packet, in order to save the sender for other tasks.

B. Intermediate Node Operations

The intermediate nodes of the cloud computing are only

responsible for packet forwarding based on their flow tables.

They will basically match on the address field (the session

identifier) and the sub-flow identifier field. Since both the

group management and the decision making is pre-done by

the controller, no computational resource is wasted on these

nodes. Thus, the intermediate nodes are expected to achieve

their best performance in packet forwarding.

C. Receiver Operations

First, a receiver joins a multicast group by sending

“Group Join” message to the corresponding management

address. Upon retrieval of the join message, the controller

updates the management database and replies with the

necessary information about the multicast group. After

joining the group, the receivers in a multicast session basically

plays the role of traffic aggregator and network state monitor.

First, the receivers need to aggregate traffic from all multicast

sub-flows of the corresponding multicast session into the

sequential flow of data, which can be directly consumed by

the upper layer. The aggregation process basically follows the

MPTCP method, thus will not be discussed in this paper.

The receivers also perform reliability functionalities.

There have been many existing reliability mechanisms for

multicast transportation [1], [2], [11]. The proposed scheme is

free to perform any of the existing reliability protocols, only

that all mechanisms are performed in the sub-flow level.

Besides, the receivers can also reply receiving statistics to the

controller through the management address. This can provide

some sort of feedback for the in-time update of the network

status. A receiver leaves a group by sending “Group Leave”

message to the corresponding management address.

D. Controller Operations

The controller present near the cloud of the network

takes most of the jobs in maintaining a multicast session.

Below are some of the responsibilities of the controller.

a) Group management
The controller manages the information of all multicast

groups and sessions in the cloud network. It processes joining

and leaving of group members, as well as periodically

checking the status of each member. By offloading the task of

group management to the controller, the intermediate nodes

in the cloud network can then devote all their efforts to packet

forwarding, greatly improving the performance and the

scalability of the multicast scheme for cloud computing.

b) Topology service and routing
The controller of the cloud computing keeps track of the

global view of the whole cloud network, and thus is optimal

in providing network view and calculating best routes for

nearby components present in the cloud. Upon the retrieval of

the transmission initiation message from each sender near the

cloud, the controller computes the optimal routes regarding of

the session and replies the information towards the sender, thus

initiating the transmission. If there is not enough capacity in

the cloud network, or some receivers are temporarily

unreachable, the controller will either pause or drop the

initiation message.

c) Flow table updating

Prior to initiating each session of transmission, the

controller will first configure each intermediate nodes of the
cloud network in the routes of the session, updating their flow

tables in order to provide the correct routing functionality.
Also, when the network is undergoing dynamics, the

controller need to recompute all the routes and update the

corresponding switch tables.

Besides these basic functionalities, the controller can

apply various policies, such as middlebox enforcement etc. In

this paper, the primary functionalities required by a multicast

scheme are examined.

Sayantan Guha & Adel Alshamrani / IJCTT, 68(3), 92-98, 2020

96

E. Management Communication

It is notable to mention how the end-hosts at the cloud of

the network communicate with the SDN controller. Basically,

the communication between end- hosts and the controller has

three types: receiver- initiated, sender-initiated and controller-

initiated. The corresponding message formats are defined in

the management protocol.

Receiver-initiated communication basically includes two

kinds of messages: request for group join, and notification of

group leave. When the receiver wishes to join a group, it

sends the group join message to the controller, and wait for

the reply from the controller about joining status; when it

wishes to leave a group, it sends the group leave message and

quit without reply. Similarly, sender-initiated communication

basically involves session initialization and session end, the

former with a reply and the latter without. The controller-

initiated messages mostly involve network or group status

updates.

There are two choices for the communication between

end hosts and the controller: connectional and connectionless.

In this proposed scheme, the connectionless communication

for information exchange between end-hosts and the

controller is considered. This is due to three reasons:

 Connectional communication will incur extra

communication overhead, which will influence the

response time off from the controller;

 Direct connectional communication between end hosts

and the controller may raise security issues;

 The communication is applied in a simple request-

reply manner, in which case the requester can keep the

full responsibility of retransmitting the request or

verifying the transmitted reply, thus the benefits of

connectional communication is minor in this case.

The communication takes place in the following

process. For end-host-initiated communication, the

requester manipulates the request message based on the

protocol sends the message towards a specific virtual

management address and listens to the send port for the

reply. The controller receives all packets sent to this

management address parses the requests according to the

protocol, verifies and processes the requests, manipulates

the reply message, and sends to the source addresses and

ports based on request packets. For controller-initiated

communication, the controller simply manipulates the

update messages and sends to corresponding end-hosts

based on its group and session data stored.

A crucial design in this process is the virtual

management address. This address is actually not bound to

an agent in the network, reserved for the use of

management only. Specifically, this address is defined in

the management protocol, which is known to both the

controller and the end-hosts. In establishing the network, the

controller will set up a flow entry in each switch, matching

all packets towards this address with the action of

“forwarding to the controller”, prior to any communication

behaviour in the network. In using this virtual address

rather than the physical address of the controller, it can

keep its identity and location private to only the network

administrator, thus securing the controller from anonymous

connections.

F. Routing

The proposed scheme achieves high bandwidth

utilization through transmission over multiple trees for each

session. It is important to understand how the cloud

network routes the packets belonging to one session but

multiple trees. In transmission, the sender needs to split the

data packets overall the trees it can utilize, and the

intermediate nodes need to distinguish data packets on

different routes belonging in one session and perform

different forwarding decisions. This is done by encoding

the route identifier of each route into the packet header.

When initializing the transmission session, the sender

and the controller will exchange information regarding the

set-up of the session, which includes the number of trees in

this session, as well as the route identifier of each tree. On

the sender side, this route identifier is thus encoded into the

packet header of each data packet, based on the load

splitting policy installed. On the controller side, when

configuring the network for this session, it needs to set up

flow entries for each tree on corresponding switches,

matching the field where the route identifier is encoded,

and performing the corresponding forwarding behaviour.

This encoding should be pre-defined in the proposed

scheme, which is known to both the sender and the

controller. Applicable fields include VLAN ID or MPLS

tag.

IV. CASE STUDY

Our performance evaluation is conducted on GENI test-
bed [12], a well-known network emulator with special

supports for OpenFlow simulation which uses POX as a
controller. In our simulation, we first build a designated

GENI test-bed topology for testing. After that, we run our

controller, receiver and sender program on corresponding
virtual nodes in the topology. We count the data amount

received at each receiver program as our main metrics of

performance evaluation. Our GENI topology is shown in
Figure 2. We have one sender s, and three receivers r1; r2;

r3.

Sayantan Guha & Adel Alshamrani / IJCTT, 68(3), 92-98, 2020

97

Fig. 2 GENI Topology for cloud Computing

To validate our multitree scheme, we set cloud links near

the cloud of the network to have a capacity of

$100Mbps$, while core links have a capacity of

$5Mbps$. This is a common scenario, as for example in data

center networks, the core links are usually the bottleneck of

the whole of the cloud computing. The traffic is generated

on the sender, where fixed-length meaningless bytes are

filled in the sender buffer and sent on the different routes.

The proposed scheme is compared to a singletree

multicast scheme in some experiments. Without loss of

generality, we implement the single-tree routing algorithm

using BFS as well. This is because, in this paper, we don’t

take into consideration QoS metrics other than bandwidth

such as latency or packet loss. Therefore, in a homogeneous

network topology such as the one we used, the bandwidth

property of any single-tree routing scheme should be the

same.

Figure 3 shows the application-level goodput from the

view of the three receivers, using both a single tree scheme

and the proposed scheme. It is clear that the goodput

received through the proposed scheme is much higher than

that through a simple single-tree multicast scheme. Also, the

average goodput of scheme is nearly 3 times of the goodput

of single-tree multicast.

Fig. 3 Application-level Goodput of Receiver

This is because in our test topology shown in Figure 2,

there are three cloud-disjoint trees from s to r1; r2; r3, each

goes through sw11; sw12; sw13 respectively. By fully

utilizing the path diversity between sw11; sw12; sw13 and

sw21; sw22; sw23, the proposed scheme can achieve three

times the bandwidth utilization of a traditional single-tree

scheme.

One possible concern about Figure 3 may be the saw-

toothlike vibration of the traffic. This is actually because we

implemented our transmission upon the UDP protocol, who

lacks the basic congestion control mechanisms as TCP has.

Specifically, this sawtooth vibration is the consequence of

intermediate nodes unfairly drops the incoming packets in a

simple drop- tail manner. Therefore, either a well-designed

congestion control mechanism or adding fair-queuing

functionality onto intermediate nodes shall alleviate the

problem.

Similar to Figure 3, Figure 4 shows the time for

transmission versus the number of data bytes transmitted.

The data is collected by explicitly specifying in the controller

up to how many trees one transmission session can use, thus

the results for a number of trees equal to 1; 2; 3 respectively.

The results confirm our demonstration in Figure 3. With an

increased number of trees being used for transmission, the

transmission time of the same amount of data can be greatly

reduced. Note that in the topology, all the three trees are

cloud-disjoint, in which case, multi-tree multicast can obtain

the best gain.

When multiple trees are sharing a bottleneck link, there

may be degradation in performance. But it is clear that even

in the worst-case scenario, where all multiple trees share a

single link, the performance of proposed scheme will be at

least as good as any single- tree multicast scheme, given the

same algorithm in finding the multicast tree.

Fig. 4 Transmission Time vs. Bytes Received

 While Figure 3 and Figure 4 give a general view of

the performance of proposed scheme, in Figure 5, we show

how the load is balanced among the trees. We take the

application-level goodput of receiver r1 and plot the

Sayantan Guha & Adel Alshamrani / IJCTT, 68(3), 92-98, 2020

98

goodput bandwidth received on each of the three multicast

trees.

Fig. 5 Application-level Goodput of Trees on Receiver r1

From Figure 5, although there seems some difference in

the throughput among the three trees, in most cases they

show the same traffic pattern. As above, the vibration is due

to the drop-tail the behaviour of the switches. From this

figure, we can further figure out that the vibration is mainly

caused by the drop-tail the behavior of the output queues at

switch sw0.

The idea here is that 1) switch sw0 is the first and

possibly the only bottleneck that every sub-flow encounters

in the network, and 2) traffic vibration on different trees

follows a very similar pattern. It is not likely that every sub-

flow follows the same traffic pattern when the bottleneck is

not shared among all sub-flows.

The above simulation results show that our proposed

scheme can achieve ultra-high bandwidth utilization

compared to traditional single-tree multicast schemes. Also,

by using designated load balancing and traffic engineering

mechanisms, we can achieve balanced load among all trees.

V. CONCLUSION

In this paper, we studied the existing limitations and

challenges of various conventional multicast communication

schemes in cloud computing, as well as how SDN can solve

the problems and enable an effective and efficient multicast

scheme design for cloud computing. The proposed scheme,

an SDN- enabled multicast scheme for cloud computing that,

not only solves the existing challenges and limitations by

introducing the flexible and powerful control plane of SDN,

but also achieves ultra-high bandwidth utilization through

fully utilizing the path diversity in the given cloud network

topology.

The proposed scheme for cloud computing is both

effective, i.e., it achieves the basic requirements of a

multicast communication scheme, and efficient, i.e., it shows

significant performance improvement compared to existing

solutions. Besides that, the proposed scheme is also flexible

and extensible. With the help of SDN, one can easily load

different policies and algorithms into the existing framework,

such as different multi-tree routing algorithms, more

complicated traffic control mechanisms, etc. The proposed

scheme is validated by actually implementing a prototype of

cloud computing, and evaluating the scheme using different

metrics. Experiment results confirm the proposed argument is

both effective and efficient. While there are still a lot of

future directions along this line, the proposed scheme shows

promising properties in improving network performance even

with its primary architecture for cloud computing.

REFERENCE

[1] Vigfusson, H. Abu-Libdeh, M. Balakrishnan, K. Birman, R.

Burgess,G. Chockler, H. Li, and Y. Tock, Dr. multicast: Rx for data

center com-munication scalability, inProceedings of the 5th
European conferenceon Computer systems. ACM, (2010) 349–362.

[2] M. Balakrishnan, Reliable communication for datacenters,(2008).
[3] B. Wang and J. C. Hou, Multicast routing and its qos

extension:problems, algorithms, and protocols,IEEE network,

14(1)(2000)22–36.
[4] K. Jain, M. Mahdian, and M. R. Salavatipour, Packing steiner trees,

in Proceedings of the fourteenth annual ACM- SIAM symposium on

Discretealgorithms. Society for Industrial and Applied Mathematics,
(2003)266–274.

[5] S. Deb and R. Srikant, Congestion control for fair resource
allocation innetworks with multicast flows, IEEE/ACM

Transactions on Networking,vol. 12(2)(2004) 274–285.

[6] M. Alizadeh, B. Atikoglu, A. Kabbani, A. Lakshmikantha, R. Pan,B.
Prabhakar, and M. Seaman, Data center transport

mechanisms:Congestion control theory and ieee standardization,
inCommunication,Control, and Computing, 46th Annual Allerton

Conference on.IEEE, (2008)1270–1277.

[7] Y. Tanisawa, Y. Hayashi, and M. Yamamoto, Quantized
congestionnotification for multicast in data center networks, inCloud

Networking(CLOUDNET), IEEE 1st International Conference

on.IEEE, (2012) 51–56.
[8] B. A. A. Nunes, M. Mendonca, X.-N. Nguyen, K. Obraczka, andT.

Turletti, A survey of software-defined networking: Past, present,
andfuture of programmable networks,IEEE Communications

Surveys &Tutorials, 16(3)(2014) 1617–1634.

[9] A. Iyer, P. Kumar, and V. Mann, Avalanche: Data center multicast
usingsoftware defined networking, inCommunication Systems and

Networks(COMSNETS), Sixth International Conference on.IEEE,

(2014)1–8.
[10] A. Ford, C. Raiciu, M. Handley, and O. Bonaventure, Tcp

extensionsfor multipath operation with multiple addresses, Tech.

(2013).

[11] M. Balakrishnan, K. P. Birman, A. Phanishayee, and S. Pleisch,

Rico-chet: Lateral error correction for time-critical multicast. inNSDI,
(2007).

[12] M. Berman, J. S. Chase, L. Landweber, A. Nakao, M. Ott, D.
Raychaud-huri, R. Ricci, and I. Seskar, Geni: A federated testbed for

innovativenetwork experiments, Computer Networks, 61(2014)5–
23,

